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Introduction 

This report describes the activities of MAGI during the 

first quarter of the present contract with the Jet Propulsion 

Laboratories. 

there will be clear delineation between topics. 

the nonlinear fluid dynamic equations are presented as well as 

some comments on the reason for  choosing this particular form for 

the integration process. Section I1 contains the complete theory 

for the linearized solution of a rotating transverse wave in a 

circular chamber. 

bation techniques from the equations of Section I. 

are graphically shown via computer generated plots. The evapora- 

tion and combustion model that will be coupled to the gas dynamic 

equations are presented in detail in Section 111. The theory 

has the feature that ignition-extinction phenomena can be in- 

cluded. Section IV contains a short description of some sub- 

projects that are in various stages of completion. 

this section is a short description of alternate procedures to be 

tested in the hydrodynamic portion of computer program COMB. 

The report is written in several sections so that 

In section I 

The equations are derived by usual pertur- 

Some results 

Included in 
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I. Fluid Dynamic Model 

The differential eqi 

- Nonlinear Differential and Difference 
Equations 

ations describing the motion of a com- 

pressible fluid in cylindrical coordinates can be written in 

vector form as 

The source term, +, has four components corresponding to the rate 
of production of mass, momentum and energy per unit volume. In 

section 111, we show how to compute this vector. The vector W 

correspond to the mass, momentum in the r and0 directions and 

total energy, all per unit volume. The vectors F, G and H rep- 

resent the flux of these quantities in the radial, tangential and 

axial directions respectively. It has been assumed that only 

four components are necessary in the representation of W, i.e., 

the axial component of momentum is ignored. 

In order to compute the time dependent behavior of 

the fluxes 

must be known. The pressure is p ,  the total energy is E (the 

fourth component of W). The velocity components in the radial, 
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tangential and axial directions are u, v and w respectively. 

vector S is obtained as a result of the transformation to cylin- 

drical coordinates from Cartesian coordinates and is given by 

The 

The components of$ are schematically 

The first and fourth terms correspond to the rate of generation 

of mass and energy per unit volume due to combustion. One ob- 

serves that the sources of momentum generation have been set 

equal to zero. The contribution of such terms will be included 

in the future when some facility has been achieved with the 

present model. 

Once the source term JI is computer, then aW/at can be ob- 

tained if an approximation to the axial gradient can be computed. 

Since we are limiting the calculation to the transverse plane and 

time (rather than include a true three dimensional model by 

allowing z variations) an additional relation must be introduced 

in place of the time dependent axial momentum equation 

(rpw) + (rpwulr + ( P W V )  e + (r(p+pw*)) = 0 (6) 

We emphasize this point because +(t) 0 implies that the left hand 

side of (1) will be positive; hence, unless the axial (2) compo- 
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nent of flux is included in the model, the solution vector w will 
I increase continually. If the calculation is to be carried out to 

arbitrary time, the accumulation can become arbitrarily large. 

It is certainly possible, in the complete three dimensional prob- 

lem, for local accumulation to exist. However, it would require 

a three dimensional-time dependent calculation to ascertain the 

~ 

I 

~ 

I , relative inaccuracy of the assumption 

a at fwrdrde = O 
(7) 

This relation allows an explicit calculation of %/a2 at time t 

by using 

rdrderrdrde 
a F + a G + S -  - 

az ar a e  
The bar over the axial derivative of the flux indicates that it 

is an average value used throughout the chamber cross section, 

i.e., 

Then equation (1) is written as 
- 

div (W, F, G, S) = 9 - aH 
az 

div = (at, a,, a , ,  1) 

- 

The right member of equation (9) is then considered as specified. 

The solution to our problem then lies on the making of 

suitable difference approximations to the left member of equa- 

tion ( 9 ) .  The difference equations that are used in the approxi- 

mation to equation (9) are of second order accuracy. If v represents 

a vector solution of the numerical problem, then v is defined on a 
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lattice of net points ri, e which are defined as the intersection 
j 

of lines of constant r and e on the r-e plane; then 
- v = v(ri,ej,t++At) 

v (ri, e , t+At) = v (ri,e j ,  t) - At F ( V ) + G e  (V) - {  r r 

are the difference approximations which are accurate to 0 (At3) I 

i.e., V itself satisfies 
17 - WI = e(At2) 

while 

Furthermore system (10) is stable in the sense of linear stability 

theory if 

At 1 1 - < - .  
A J2 lul+a 

The sound speed is a and the particle velocity is u while A is the 

space step. This result was first obtained by Richtmyer and has 

been born out in practical calculations. The exact form of 

equation (10) is given in Reference 20.  

It is interesting to note that the difference equation used 

(equation (10)) is the analogue of the physical conservation laws 

so that, when numerical integration is performed with these differ- 

ence equations, the result is the analogue of the integral equations. 

This means that across lines of discontinuity, the integral equation 

i.e., the Rankine-Hygoniot condition, will automatically be satis- 

fied. Other forms of the conservation laws will in general not 

yield the proper jump conditions. 
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. 
To see the relevance of these last remarks, consider a model 

equation of equation (1) , 

then the equation is nonlinear and discontinuities will develop 

in a finite time even if the initial data is smooth. Let [p] 

signify the jump in the function p ,  then if these are lines of 

discontinuity in the solution to equation (ll), the jumps must 

satisfy 

The normal speed of propagation of the discontinuity is given the 

symbol S .  Now, however, multiply equation (11) by u and use the 

definition of F(u) . The resulting equation is 

(+u2)t + (1/3~3), = O (13) 

Hence discontinuities arising in the solution of equation (13) 

must have jumps in the solution u. which satisfy 

-U ( 1 4 )  
stu23 =-I:? 

It is clear then, that the strength of the discontinuity, if 

measured by say the jump in u, will, in general differ. The value 

of the jump will be a function of the form of the differential 

equation that is solved. Another example can be obtained immed- 

iately from equation (ll), i.e., carry out the differentiation 

that is indicated in equation (11) and divide by u to obtain 

(In u ) ~  + ur = 0 
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wLich obviously has an associated jump condition which differs 

from equation (12). 
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11. Linear Theory - Transverse Rotating Wave 
In this section we show that by neglecting the right member 

of equation ( 9 )  the resulting system 

W t + F r + G  + S = O  (1) 

can be linearized and an exact solution in the domain a(which we 

take as the unit disc) will be found. First we write system (1) 

in its component form; by substracting the first component, i.e., 

the continuity equation, premultiplied by the r(e) component of 

velocity from the r(e) momentum equation, one obtains the con- 

tinuity equation 

and the two momentum equations in the form 

where D - ( )t + ( )r + v,( ) e  is the particle derivative in 
Dt r 

polar coordinates and V - q =  (rU)r + - 1 ve is the divergence in 
these coordinates. 

r 

In the absence of irreversible changes (heat conduction, 

viscous effects, etc.) the fluid undergoes a reversible adiabatic 

change. The initial state of a fluid can be connected to its 

final state through 

pp -Y= constant for a particle ( 3 )  

If the fluid is initially uniform the constant in equation ( 3 )  is 

the same for each particle in the domain & It is then possible 

to replace Dp by a-2Dp, where a is the sound speed: and we do so 

in system (2). NOW, linearization is imposed so that a solution 

of the linearized form of (2) can be obtained. Let p =  p a  + p , 1 
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1 p = p, + p and am = y p,/p,; then system ( 2 )  can be g iven  i n  

t h e  l i n e a r i z e d  form 

i s  t h e  f l u i d  v e l o c i t y  which i s  t h e  d e v i a t i o n  from (3 H e r e  p =  

t h e  i n i t i a l  uniform c o n s t a n t  s t a t e .  The t e r m  i n  t h e  b r a c k e t s  of 

( 2 )  can be neglec ted  a f t e r  l i n e a r i z a t i o n  because it i s  q u a d r a t i c  

i n  t h e  v e l o c i t y  components. Now it i s  clear  t h a t  s i n c e  t h e  

v e c t o r  5 i s  g iven  as  t h e  g r a d i e n t  of  a scalar f u n c t i o n ,  i . e . ,  p 1 , 

0 because t h e  entropy i s  c o n s t a n t )  t hen  t h e  e x i s t e n c e  9 =  (a l so  v x  

of a p o t e n t i a l +  i s  implied such t h a t  f = grad  + ,  i . e . ,  t h e  com- 

ponents  of 3 are g iven  by 

s i n c e  t h e  g r a d i e n t  o p e r a t o r  i s  

' ( r , e )  = 

r a e  

whence 

and 

Then t h e  wave equa t ion  can be obtained f r o m  t h e  above b a s i c  equa- 

t i o n s  of a c o u s t i c  theory .  The r e s u l t  i s ,  of cour se ,  t h e  f a m i l i a r  

form 2 2  (6) +tt = amV + 
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in acoustic theory one usually expresses the solution of equation 

(6) as a series each term of which corresponds to a particular 

Fourier component. 

equation (6) as a sum of two solutions, i.e., ingoing and outgoing 

waves 

Once can also represent the solution of 

+ = g1 ( = e x  5 -  - amt) + g2 ( = O X  - -  + amt) ( 7 )  

where the plane waves travel at normal speed am in the= 

in the space of 8fx). 

built up by a superposition of many of these waves given by equa- 

tion ( 7 ) .  

direction 

Since ( 6 )  is linear, the solution can be 
I 

Solutions to equation (6) can be most easily obtained by 

separation of variables. Since 

and the homogeneous boundary condition 

+r(l,e,t) = 0 (9) 

which expresses the fact that the normal velocity is zero at the 

boundary r = 1. Since we considerfy to be the unit disc, normal- 

ization will be required when the radial component of the solution 

is generated. The initial conditions also have to be specified; 

they are 

+(r,e,O) = ++e) = 0 

and 

If we assume a solution of equation ( 8 )  of the form 
+iKamt + = R(r) @ ( e )  e 
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Then t h e  t w o  o r d i n a r y  d i f f e r e n t i a l  equa t ions  f o r  which R and 

must s a t i s f y  are  

@ 

d2 @ + n 2  @ = O  

To o b t a i n  t h e  p e r i o d i c i t y  of +, t h a t  i s  + ( 8 + 2 7 ~ )  = J, ( e ) ,  w e  

res t r ic t  t h e  nuxibers which n can take on t o  be i n t e g e r s .  Hence 

@ sa t i s f ies  

and f o r  s o l u t i o n s  w h i c h  are f i n i t e  a t  r = O  w e  have 

R = J n ( K r )  

H e r e  J n ( K r )  deno te s  t h e  B e s s e l  f unc t ion  of t h e  f i r s t  kind of o r d e r  

and argument K r .  I n  such a manner s o l u t i o n s  of equa t ion  (8 )  

can  be b u i l t  up from a series which has  t e r m s  of t h e  form 

+ine&iKa,t 
Jn ( K r )  

J' 
T o  s a t i s f y  boundary c o n d i t i o n  ( 9 )  w e  se t  J n ( K R )  = 0 ,  which i s  a 

t r a n s e n d e n t a l  equa t ion  d e f i n i n g  t h e  numbers K( fo r  n=1, K-1.841 . 
W e  t ake  t h e  imaginary component of t h e  above s o l u t i o n  which l e a d s  

R 1 

t o  t h e  t r a v e l i n g  wave s o l u t i o n  w i t h  n = 1. 

I t  i s  c lear  t h a t  t h e  above r e s u l t  i s  of t h e  same form as  g iven  by 

e q u a t i o n  ( 7 ) .  T h e  d e n s i t y  i s  computed us ing  equa t ion  ( 3 )  and E is  

a d imens ionless  measure of t h e  amplitude de f ined  below. 
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The solution we seek of equation (8), i.e., equation (13) 

will satisfy the boundary condition of zero normal velocity at 

r = R. In addition the solution will also satisfy the initial 

conditions given by equation (10) if we take 

q J o  = eJn(Kr) sin ne 

and 

aqJ/at = -camK Jn(Kr) cos ne , n = 1 

to be the initial data. 

Finally, one observation: The solution is completely ob- 

tained with the specification of only one boundary condition, irer 

u(R,t) = 0 = aQ/ar, This result is carried over to the nonlinear 

problem. 

System (13) has been programmed and incorporated into program 

COMB (Reference 20)  as initial data. Since the solution repre- 

sented by system ( 1 3 )  is physically the deviation from the uniform 

state, we can define a dimensionless parameter measuring the max 

of this deviation p max = p*: 1 

= (pm+p*)-pm = P*/(PmyJ1(K*)) , K* = 1.841... 

vPmJ1 (K*) 
which essentially measures the deviation from uniformity at the 

point (r,e ,t) = (Rmax,O,O). The solution is then parametized in 

terms of e, i.e., the pressure at any point on the disc is 
p(r,e,t)/pm = ~+&-YJ~(K*) 

The solution for the pressure is given in Figure (1) for t = 0. 

For t>O the contour lines (isobars) undergo a uniform rotation 

corresponding to a spinning mode. The plot of the density field 
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f .  

is similar. Figure (2) and Figure (3) correspond to lines of 

constant a $ / a r  and - 1 aJ l /ae  respectively: 
r ~ 

1 

u =cJ1(Kr) sin (Ka,t+e), Jlz ‘ 1  - (J -J ) 
2 O 2  - 

a .  

The singularity at r = 0 offers no difficulty since the identity 

Jn(x) 1 ( J A Z ~  + ~ ~ 7 1 )  
= Zn 

X 

shows that v/a, is well behaved for all x in 8,  

13 



THE DROPLET EVAPORATION AND COMBUSTION ANALYSIS -- 

111. The "Complete" Model (Computation of $ )  

Initially, the propellant system will be taken to be hydra- 

zine (NZHq)/nitrogen tetroxide (N204). The oxidation behavior of 

this system has been the subject of intensive investigation for a 

number of years (Ref. 1 through 10). Recent evidence (Ref. 10) 

suggests that at moderate pressures, hydrazine decomposition occurs 

very close to the droplet surface, with the combustible decomposi- 

tion products (NH3 and H2) partially oxidizing first with NO, 

followed by complete oxidation with 0 2 .  The two distinct oxidation 

regimes result in the two-flame appearance characteristic of 

N2H4/N204 droplet combustion. 

Since the rate-controlling chemical kinetic reactions are 

likely to change under very low or very high pressure conditions 

(the former is characteristic of high-altitude ignition, and the 

latter of high pressure rocket motor operation), a complete model 

of hydrazine droplet combustion would be one which includes a 

detailed description of the chemical kinetics. If it is assumed 

initially that the droplet undergoes spherically-symmetric, quasi- 

steady-state burning at constant pressure in quiescent oxidizer 

surroundings, and if it is further assumed that no viscous or 

body forces are present, and that thermal radiation can be neglected, 

the three-dimensional, time-dependent spherical conservation equa- 

tions can be shown to reduce to: 

1. Overall Continuity 

14 



which if integrated between the droplet surface 

and any arbitrary radial location becomes 
2 

s S D  pvr2 = P v r 

2. Species Continuity 

- 1 (arD - dYi - d (r2 e')) = - sc 
r2 dr dr dr 1-1 Ri 

where a is a dimensionless mass burning rate: 

a z  P sVsrD 

(3) 

(4) 

yi = mass fraction of species i, 

Sc = dimensionless Schmidt number (p/pD), 

Ri = rate of generation or disappearance of i, 

D = the diffusion coefficient 

The boundary conditions for equation (3) are that (a) the 

net mass flux of all species (excepting the fuel, N2H4) at the 

droplet surface must equal zero: 

a t r = r -  a = dYi ; i # N 2 ~ 4  
D' r Yi . D 

a = dYi ; i = N2H4 - (Yi-1) dr 
rD 

and (b) as r+m, the gas environment consists only of N2O4 and its 

decomposition products (NO2, NO, and 02) : 

as r-: yi = 0; i = 1, 2, 3, 4 
(3b) 

Yi - - Yi,m ; i = 5, 6 ,  7, 8 

The species numbering system is indicated in Table I. 

If the N 0 and its products are assumed to be in chemical equili- 

brium, the YiIm values are readily calculated. 
2 4  
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3 .  Energy Conservation 

where Le = Lewis number (pDcp/k) 

k = thermal conductivity 

P c = mixture specific heat Yicpi) 
i 

Hi = enthalpy of species i 

The appropriate boundary conditions are that (a) when the 

temperature of the droplet is taken to be uniform and constant, 

the heat conducted to the droplet must equal the heat required to 

vaporize the fuel leaving the droplet: 

at r = rD: - 1 (CPE) = a  - L 
Le ‘D 

and (b) as r+-, the temperature approaches the rocket environ- 

mental temperature: 

as r--: T+T, 

A series of species generation equations are required (the 

The actual chemical kinetic mechanism for N2H4/N204 Ri terms). 

is known to be enormously complicated, involving tens of species 

and probably well over one hundred elementary chemical reactions 

(Ref. 11). A s  an initial approximation to the actual chemical 

kinetic mechanism, the sequence of ten overall (global) irreversi- 

ble reactions shown in Table I1 may be taken to represent the 

kinetic mechanism. Sawyer (Ref. 6) has investigated each of these 

reactions, and his values for the individual reaction rate con- 

stants are given in Table 11. 

observed no reaction between NH3 and NO, and between H2 and NO, 

(It should be noted that Sawyer 

16 



which reduces this kinetic mechanism to 8 overall, irreversible 

reactions.) 

written in terms of the reaction rate constants (h), the gas 
density, and the species mass fractions and molecular weights as 

shown in Table 111. 

Based on this kinetic mechanism, the Ri terms may be 

Assuming all gases to be ideal, the equation of state may 

be written 

P =  P 

I 
Mi 

Given the requir-3 thermochemical data (c ,Hi,etc.), equations 
Pi 

(l), ( 3 ) ,  ( 5 ) ,  (6) and the Ri equations (Table III), with the 

associated boundary conditions lead to an equation system in which 

a number of parameters must take on particular values; that is, 

this formulation leads to a multiple eigenvalue problem, The 

physical necessity for multiple eigenvalues in a subject of cur- 

rent research and debate (References 12 though 16). Wehner (Ref. 

16) argues that the second eigenvalue may be a kinetic parameter 

to which the flammability limits are related. (The first eigen- 

value is the flame velocity in the theory of laminar, one-dimen- 

sional, premixed flames, and is the surface mass flux, 

the droplet flame problem.) Williams (Ref. 15) reEutes Wehner's 

arguments for the existence of more than one physical eigenvalue. 

In any event, the work of Campbell (References 12 through 14) 

indicates the current inability to obtain solutions to system of 

svs, in 

equations of this type without a number of additional simplifying 

assumptions. 



THE MODIFIED FLAME SURFACE ANALYSIS 

Recently, Peskin (References 17 and 18) has obtained solutions 

to the problem of a fuel droplet burning steadily in an oxidizing 

atmosphere by assuming, in addition to the assumptions noted in 

the previous section, that the reaction mechanism could be ade- 

quately represented by a one-step, irreversible reaction of the 

S F + S O  k-f sP F 0 P 
type : 

( 7 )  

where the si represent the stoichiometric coefficients, F is the 
fuel, 0 the oxidizer, and P the product; (b) assuming the Lewis 

number to be unity; (c) taking constant averaged values for the 

specific heats, density, and heats of vaporization and combustion: 

(d) assuming transport parameters independent of temperatures and 

chemical composition; (e) neglecting the energy transport due to 

species diffusion (i.e., the term dT (: cpi ds) in equation 

(5) ; (f) and by employing the modified flame surface approxima- 
?E dr 

tion discussed below. 

Although the analysis employs a number of assumptions, it 

has the advantage of retaining some aspect of the chemical kinetics. 

As a result, the feature of droplet extinction and re-ignition is 

retained, one which is of potential consequence in an unstable 

rocket system wherein the droplets may encounter regions of ex- 

pansion and compression. 

assume diffusional processes to be rate-controlling neglect the 

Since droplet combustion analyses which 

chemical kinetics entirely, the extinction-ignition feature is 

absent. Such an approximation is discussed in the next section. 
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Employing the additional assumptions discussed above, the 

species continuity equation 

1 (a,, dYi - d (r2 z)) = - Ri 
PD 7 dr dr dr 

may be written 

where n 
rD, b 5 'D2B, B pA(T)e-E/ROT, and NF and No represent 

D 
the reaction orders with respect to fuel and oxidizer. The ii term 

arises from the fact that Ro, =doM, 

for the assumed one-step, irreversi E le reaction 
and Rp= - $PMP Thus, 

RF * RF' 

il = -1, i2 = -(23/16) I i3 = ( 9 / 8 ) ,  and i4 = (21/16). 

The simplified form of the energy equation (equation 5 )  is 

Introducing the notation t = (T-T,)/(Q/cp) I and Q = Hl+i2H2+i3H3 

+i4H4, equation (10) becomes: 

Writing equation ( 9 )  for the fuel, multiplying the resulting 

expression by i2, then subtracting from it equation (9) written 

for the oxidizer, leads to: 

which can be integrated to yield: 

19 



Subtracting equation (9) for the fuel from equation (11) 

leads to: 

which, when integrated, becomes: 

(15) yF + t = ~3 + ~4 exp (-a/n) 
The boundary conditions equations (3a), (3b), (5a) and (5b) 

reduct to 

at n=l: d : k = 0,P 
G n=l 

drl 
=aYF -a I n=l 'F 

as q-: =O 

= L  
drl dt I P 

at n = l :  

Insertion of the appropriate boundary conditions into equa- 

tion (15), and after algebraic manipulation, an expression can be 

derived for the dimensionless mass burning rate: 
L 

l + t s - Q  
- 

- L  - 'F,s - Q 
and YF,s - - 

a = In 

where t, = 

The analysis, which is 

system, next assumes that a 

currently in progress for the N2H4/NO2 

flame surface is located at rl = rl* where 

the fuel-oxidant ratio is stoichiometric. The reaction rate terms 

20 



on the right-hand sides of equations ( 9 )  and (11) are replaced by 

Dirac-delta functions; e.g., for the fuel, equation ( 9 )  becomes 

where Yg = YF and 6 ( n )  is the delta-function. 

Equation (17) can be integrated using generalized function 

theory to yield an expression for the fuel distribution: 

Similar expressions can be derived for the oxidizer, product, and 

temperature distributions. 

One key aspect of the above analysis is that a satisfactory 

overall reaction rate constant (i.e., B) be inserted into the 

above analysis in order to obtain a realistic representation of 

the "actual" chemical kinetics over a wide range of operating 

conditions. Currently, the "complete" gas-phase chemical kinetic 

system detailed in Table I1 is being programmed into a one- 

dimensional analysis describing flow along a streamline. From 

the results obtained over a range of conditions, the appropriate 

values for A(T) and the activation energy, E, can be obtained for 

the hydrazine-NTO system for insertion into the above analysis. 

THE DIFFUSION-CONTROLLED FLAME ANALYSIS 

In an effort to test out the behavior of hydrodynamics code 

with and without chemical reactions, a diffusion flame model was 

developed. Introducing the rate of disappearance of the fuel 

(19) 2 m ; E PSVS (4nrD) 



Setting Q = QT, where QT is the heat of reaction per unit mass of 

fuel and oxidizer consumed, using the definition of ts 

(ts=cp(Ts-T )/Q), and the fact that Le = 1, and noting that YF,s=l 

for this elementary diffusion flame model, equation (16) reduces 

where QT = Yolm QfsAHR, Y O I o D  is the mass fraction of oxidizer in 

the chamber gases, (P is the fuel-oxidant equivalence ratio, fs is 

the stoichiometric fuel-oxidant ratio, AHR is the heat of reaction 

per unit mass of fuel, and the superscript zero on the &: term 

indicates that this is the fuel mass flux in a stationary environ- 

ment; that is, in the absence of forced convection effects. Written 

in a slightly modified form, equation (20) is frequently referred 

to as the Godsave equation. As a first approximation, the mass 

flux dependence on the fact that there will, in general, be a 

difference in velocity between the droplet and its surroundings 

will be assumed to be given by the expression of Agoston, Wise, 

and Rosser (Reference 19) : 

xi; 
where Re = (2pmrD) lu-vl/vm and Pr = cpmv,/k,. 

In this manner, the components of the $-vector of the hydro- 

dynamics code can be written (assuming no drag force interactions 

for the pancake motor model): 
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JI 

F Ii.l 
1 

( l + F )  
S 

0 

0 .- 
L, 

( A HR-L- @ f I 
where Lo is the latent heat of the oxidizer. 

diffusion flame analysis is currently being coupled with the hydro- 

dynamics code. 

This elementary 

23 



IV. Program COMB Status 

This past quarter saw a rapid expansion of the basic computer 

program COMB. The major accomplishments are: 

1. Incorporation of nine subroutines which constitute 

a graphical display package for use on Calcomp digital display 

devices. This basic package was obtained from another installa- 

tion and required some extensive modification for use with COMB. 

Also, two additional subroutines were required which act as an 

interface between the numerical portion of the code and the 

graphical display package. 

2 .  Incorporation of several subroutines which carry out 

numerical quadratures in two space dimensions in the r-e plane. 

The.- theory behind these routines are given in Appendix A of 

this report. These routines carry out the execution of equation 

( 8 )  of Section 11. 

3 .  A subroutine, to compute J, given in equation (1) of 

Section I, was written and is presently being checked out. This 

subroutine incorporates all of the theory of Section IV and is 

essentially a computation of equation ( 2 2 )  of this section. 

4 .  Generation of two subroutines used to compute the theory 

of Section 11. These routines essentially generate the initial 

conditions of the fluid dynamic flow field corresponding to a 

spinning tangential wave of either finite or infinitesimal ampli- 

tude. The basic structure of these two routines were contained 

in a program listing communicated to us by Dr. George Sotter, for 

which we express our gratitude. 
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5. More accurate approximations have been constructed for 

calculation of special mesh points in COMB. 

spent on boundary points and the center point calculation. 

The emphasis has been 

The 

boundary point calculation is presently undergoing experimentation, 

the center point calculation has yet to be coded and tested. 

6. The logic of COMB has been altered so as to include the 

source and flux terms as shown in equation (9), Section I. 

We would like to give some details relating to statement 5 

given above. First a few remarks on the specification of the 

boundary r = R. The linear theory shows that once u(R,e,t) = 0, 

is specified, the flow field is determined for all t. We write 

the corresponding boundary condition using the conservation of 

radial momentum 

a pur = o = - a( (pu2+p)r - a PUV +(P+Pv2) 
at ar a e  

at a point on the boundary. Since u = 0, (PUV)~ = 0 and the 

difference approximation to the above relation at (ri, ej) becomes 

(PU2+P) - r(w2+p) + r(pu2+p) 
i+4, j+4  i-4, j+4  i+4, j-4 
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If the subscript + denotes image points then the subscript - 
denotes the corresponding interior point and using 

(pr)+ = (pr)- 

u+ = -u - 

as reflection rules the condition 

will yield a zero value of normalvelocity. The above condition 

on the radial pressure gradient states that it is just balanced 

by the centrifugal force pv2/R in the radial direction due to 

fluid motion in the tangential direction. In Cartesian coordinates 

the above conditions reduce to the familiar forms p +  = p - ,  u+ =-u,, 

v+ = v, and p+ = p-. 

The center point calculation is going to be modified from 

the present method as stated in Reference 20. The new method 

attempts to compute the divergence of the flow field at r = 0, i.e., 

aW/at is known if 

is known. Note that we use Cartesian coordinates for this cal- 
- + %  af 
ax ay 

culation so that the x-y velocity components are related to the 

r-e velocity components through 

x-component: u = Ur cos8 - v8 sine 

y-component: v = ur sine + ve cose 

We transform f (r,e) -+ f (x,y) and g(r,e) -+ g(x,y) using the above 

transformation. The density and pressure are not effected by 

coordinate transformations. 
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Now, if we consider a region R with boundary aR in the x-y 

plane then if af/ax, and ag/ay exist, then 

and where all contour integrals are taken counterclockwise. For 

this calculation aR is a circle of radius Ar and the contour inte- 

grals are approximated by the sums 

Then 

The values of f and g used in the sums in equation (1) are evalu- 

ated at t+~t/2 so that equation (2) is second order accurate, - 
consistent with regular mesh points in the interior of the combus- 

tion chamber. 
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APPENDIX A 

Consider Integrals of the form 
I{Wl=j jn Wderdr 

0 0  

W is a vector valued function 

W = W(r,e) 

The domain of integration is defined for 0 5 0 5 2 ~  and OsrsR. 

Introduce for the function W a function of the single variable 

r via 

Then the double integral becomes 

In general the inteval cO,R] will have N+1 net points that 

may be even. This does not allow the use of Simpsons rule since 

the number of points must be odd. For the case of even number of 

net points the following procedure may be used. Let h be the 

step size then 

and 
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m-1 

c h  3 c j=1 
B(W;r)rdr = h B1(W;3h) + B'(W;R)+2E ~(w;3h+2jh) 

m-1 

j=1 
+ 4 B(W;3h+(Zj-l)hi +e2 

It remains for us to evaluate B(W;r). A condition of 

periodicity exists on W, i.e., 

w(e+2~) = w(e) 
The Euler-Maclaurin summation formula with h=he 

P-1 e+ph 
W(e+jh) = 1 W(.c)dT - 1 LW(e+ph)-W(€Ig 

j=O Fi e z 

+ h [W'(B+ph)-W'(Bg -h3 [W'"(e+ph)-Wl"(e)] 
Tz m 

letting p=l and e = O  

h 

0 2 
W(.r)dT = hW(0) + h [W(h)-W(OJ 

The brackets cancel to zero if the above formula is used for all 

the intevals (ej, ej+1) O<j<N-l in the interior for the function 

W(T) and also at e o  and eN due to periodicity. 
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W(r;e)de = L W(r, e.) +e ( * )  K j=O 3 
B(W;r) = 

(2m+2)  
e = h  2m+2 2TCm w ( 5 )  - O<EL2IT 

where W E  C 2m+2 CO, 2 3  and is  IT periodic. This formulae, ( * I ,  

is used in the integration routines in COMB. 
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TABLE I 

SPECIES MOLEC. WT. HEAT OF FORMATION 
(kca l/mole ) 

3 2  

1 7  

2 

28  

9 2  

4 6  

3 0  

3 2  

1 8  

2 2 . 7 5 0  

- 1 1 . 0 4 0  

0 

0 

2 . 1 7 0  

7 . 9 1 0  

2 1 . 5 8 0  

0 

- 5 7 . 7 9 8  
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* TABLE I11 

SPECIES GENERATION EQUATIONS 

Rg = 2 p Y 1  2 ( ,k2 - p Y 6  + k3 + k4) + 3 p Y 2  M9 

M1 M6 z M2 
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